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Parallel computing in machine learning - an overview

Built-in and Third Party multiprocessing ressources

Optimizing data communication
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Python? What for?

Python usage among developers 1

1source: https://www.jetbrains.com/research/python-developers-survey-2018/
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A growing data science ecosystem

numpy for n-dimensional arrays

pandas for data analytics

scikit-learn for machine learning
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Parallel computing? Why?

Independent, similar computation happens a lot in machine
learning. We call it embarassingly parallel tasks. Famous examples:

▶ cross validation
▶ random forests
▶ hyperparameter selection using grid search

Happens for many scikit-learn estimators, but not all.
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Parallel computing in scikit-learn made easy

Parallelization in scikit-learn :

▶ ubiquituous

▶ painlessly toggled using estimators’s n_jobs option:

clf = RandomForestClassifier(n_estimators=100, n_jobs=4)
X, y = get_data()
clf.fit(X, y) # runs on 4 cores!
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Multithreading or multiprocessing?

Parallelism usually exist under two different forms:

▶ executing multiple processes (python programs) in parallel

▶ executing multiple threads of a same process in parallel

8 / 28



Multithreading or multiprocessing?

Parallelism usually exist under two different forms:

▶ executing multiple processes (python programs) in parallel

▶ executing multiple threads of a same process in parallel

8 / 28



Fitting a random forest

I want to fit many small decision trees independently, on the same data.
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▶ no data copies
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-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code ( numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28



Fitting a random forest
I want to fit many small decision trees independently, on the same data.

thread-based parallelism:

+: threads share memory
▶ no data copies
▶ no data transfer

-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code ( numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28



Fitting a random forest
I want to fit many small decision trees independently, on the same data.

thread-based parallelism:

+: threads share memory
▶ no data copies
▶ no data transfer

-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code ( numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28



Fitting a random forest
I want to fit many small decision trees independently, on the same data.

thread-based parallelism:

+: threads share memory
▶ no data copies
▶ no data transfer

-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code ( numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28



Fitting a random forest

I want to fit many small decision trees independently, on the same data.

process-based parallelism:

+: processes are assured to run in
parallel

-: need to pass and copy data around
▶ larger memory footprint
▶ data transfer overhead

main process
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Process-3Process-2Process-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28



Fitting a random forest

I want to fit many small decision trees independently, on the same data.

process-based parallelism:

+: processes are assured to run in
parallel

-: need to pass and copy data around
▶ larger memory footprint
▶ data transfer overhead

main process
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Process-3Process-2Process-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28



Fitting a random forest

I want to fit many small decision trees independently, on the same data.

process-based parallelism:

+: processes are assured to run in
parallel

-: need to pass and copy data around
▶ larger memory footprint
▶ data transfer overhead

main process
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Process-3Process-2Process-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28



In practice

Figure: Model fitting time - parallel vs. sequential
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Built-in and Third Party multiprocessing ressources

11 / 28



multiprocessing

provides all necessary constructs for creating and handling
proccesses in Python programs

▶ creation
▶ communication
▶ synchronization

main process

mp.Lock

mp.Processmp.Process

mp.Queue

It’s a very rich library!
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multiprocessing
Programs executing embarassingly parallel tasks share a common
multiprocessing strucure:

import multiprocessing as mp

# Q: how can i parallelize this effortlessly?
results = map(greet, ["alice", "bob"])

# A: worker pools
pool = mp.Pool(2)
results = pool.map(greet, ["Alice", "Bob"])

main process

worker-1

worker-2

greet("Alice")
greet("Bob")

result_1
result_2

mp.Pool

This structure is abstracted away in the mp.Pool class
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multiprocessing portability

Windows (start method; spawn) causes issues with interactive ses-
sions ( IPython, Jupyter )

import multiprocessing as mp
mp.set_start_method("spawn")
p = mp.Pool(2)
def greet_friend(name):

... print("hello {}!".format(name))
...
p.map(greet_friend, ("Alice", "Bob"))

AttributeError: Cant get attribute 'greet_friend' on <module ' __main __'>

posix (start method; fork) causes crash with external libraries (GNU
openmp )

recovering from child processes crashes
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loky

loky is a third party package, that provides a more robust
process pool implementation.

Support for Python3.4 + (And 2.7... until next year)
Consistent behavior on all  , and 

Works in interactive shells

It is also the default backend of scikit-learn
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loky - API

concurrent futures and loky only expose (the same) worker pool objects

using concurent.futures

from concurrent.futures import ProcessPoolExecutor
executor = ProcessPoolExecutor(max_workers=2)
def greet_friend(name):

... return "hello {}!".format(name)
...
results = executor.map(greet_friend, ("Alice", "Bob")) # non-blocking
for r in results: # blocking until the next task completes.

... print(r)
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joblib

joblib is a parallel computing library built on top of of loky . It provides
many useful features and optimizations for data scientists, including:

disk-based memoization of expensive computations

a backend-agnostic user API

with parallel_backend("loky", n_jobs=2):
do_stuff_in_parallel()
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@memory.cache
... def f(x):
... print('Running f(%s)' % x)
... return x
print(f(1)) # computes f(1), dumps the result to disk

Running f(1)
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joblib is a parallel computing library built on top of of loky . It provides
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The challenges of multiprocessing (and beyond)

Improvements in python multiprocessing mostly concern:

speed (of data communication)
memory footprint (of duplicated data)
ease of use, robustnews(deadlocks)
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Optimizing data transfer
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disclaimer

The optimizations mentionned now are CPython specific.
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Serialization
Serialization defines the process of transforming an in-memory object into a
sequence of bytes.

estimator

estimator

0111101. ..01

process-1 process-2

deserializationserialization

The bytes string contains the instructions sequence that has to be executed to
reconstruct the graph of objects in a fresh python environment
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the pickle protocol

Python defines a serialization protocol called pickle , and provides an
implementation of it in the standard library.

import pickle
s = pickle.dumps([1, 2, 3]) # serialization (pickling) step
s

b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

depickled_list = pickle.loads(b'\x80\x03]q\x00(K\x01K\x02K\x03e.')
depickled_list

[1, 2, 3]
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pickle extensions
by design, the pickle implementation blocks the serialization of some
Python constructs

import pickle
import cloudpickle
pickle.dumps(lambda x: x + 1) # would cause arbitrary code execution

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

_pickle.PicklingError: Can't pickle <function <lambda> at 0x7fd0b36631e0
attribute lookup <lambda> on __main __ failed

In practice, data scientists need remote code execution of interactively
defined functions ( jupyter + dask , Zeppelin + (py)spark ...)
Such frameworks require pickle extensions such as cloudpickle

cloudpickle.dumps(lambda x: x + 1)
b'\x80\x04\x958\x01\x00\x00\x00\x00\x00\x00\x8c\x17cloudpickle.cloudpickle ...'
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pickle extensions (2)

The pickle module is implemented both as a pure Python module, and
as a C -optimized module.

pickle extensions however could only extend the slow pythonic pickle

$python3.7 -m timeit 'import pickle; pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.39 msec per loop
$python3.7 -m timeit 'import cloudpickle; cloudpickle.dumps(list(range(100000)))'
2 loops, best of 5: 119 msec per loop
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extending the C-optimized pickle

in Python 3.8 , pickle extensions can now extend the C-optimized
pickle module 2

$python3.8 -m timeit 'import pickle;pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.69 msec per loop
$python3.8 -m timeit 'import cloudpickle;cloudpickle.dumps(list(range(100000)))'
100 loops, best of 5: 3.73 msec per loop

30x faster than on python3.7!

2joint work with ogrisel and Antoine Pitrou
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pickle protocol 5

 pickle was originally designed for on-disk persistency of Python
objects.

 Now, it is used wildely to communicate objects between workers,
which is done in-memory. RAM usage becomes a critical concern.

pickle protocol 5 a addition: PickleBuffer
ensures no copy operations when dumping or loading objects with large numpy
arrays and Arrow tables. (pandas DataFrame , scikit-learn estima-
tors...)

awork by Antoine Pitrou
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out-of-band serialization
pickle protocol 5 goes even one step further: It allows delegation
of PEP 3118 -compatible objects serialization to third-party code.

shape

strides

flags big data buffer numpy array

pickle stream
(in band)

third-party stream
(out-of-band)
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Conclusion

parallel computing often generates significant speedups when
executing machine learning code

which backend (processes vs. threads) to use can be a problem-
specific question: what’s the size of your data, does your
compute-hungry code releases the GIL...

working with upstream is worth the hassle

Questions?
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