
Parallel Computing in Python
Current State and Recent Advances

Pierre Glaser, INRIA

July 12, 2019

1 / 28

http://kbroman.org
https://github.com/pierreglaser
https://twitter.com/pierreglaser

Parallel computing in machine learning - an overview

Built-in and Third Party multiprocessing ressources

Optimizing data communication

2 / 28

Parallel computing in machine learning - an overview

3 / 28

Python? What for?

Python usage among developers 1

1source: https://www.jetbrains.com/research/python-developers-survey-2018/
4 / 28

Python? What for?

Python usage among developers 1

1source: https://www.jetbrains.com/research/python-developers-survey-2018/
4 / 28

A growing data science ecosystem

numpy for n-dimensional arrays

pandas for data analytics

scikit-learn for machine learning

5 / 28

A growing data science ecosystem

numpy for n-dimensional arrays

pandas for data analytics

scikit-learn for machine learning

5 / 28

A growing data science ecosystem

numpy for n-dimensional arrays

pandas for data analytics

scikit-learn for machine learning

5 / 28

Parallel computing? Why?

Independent, similar computation happens a lot in machine
learning. We call it embarassingly parallel tasks. Famous examples:

▶ cross validation
▶ random forests
▶ hyperparameter selection using grid search

Happens for many scikit-learn estimators, but not all.

6 / 28

Parallel computing? Why?

Independent, similar computation happens a lot in machine
learning. We call it embarassingly parallel tasks. Famous examples:

▶ cross validation
▶ random forests
▶ hyperparameter selection using grid search

Happens for many scikit-learn estimators, but not all.

6 / 28

Parallel computing in scikit-learn made easy

Parallelization in scikit-learn :

▶ ubiquituous

▶ painlessly toggled using estimators’s n_jobs option:

clf = RandomForestClassifier(n_estimators=100, n_jobs=4)
X, y = get_data()
clf.fit(X, y) # runs on 4 cores!

7 / 28

Parallel computing in scikit-learn made easy

Parallelization in scikit-learn :

▶ ubiquituous

▶ painlessly toggled using estimators’s n_jobs option:

clf = RandomForestClassifier(n_estimators=100, n_jobs=4)
X, y = get_data()
clf.fit(X, y) # runs on 4 cores!

7 / 28

Multithreading or multiprocessing?

Parallelism usually exist under two different forms:

▶ executing multiple processes (python programs) in parallel

▶ executing multiple threads of a same process in parallel

8 / 28

Multithreading or multiprocessing?

Parallelism usually exist under two different forms:

▶ executing multiple processes (python programs) in parallel

▶ executing multiple threads of a same process in parallel

8 / 28

Fitting a random forest

I want to fit many small decision trees independently, on the same data.

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

Fitting a random forest
I want to fit many small decision trees independently, on the same data.

thread-based parallelism:

+: threads share memory
▶ no data copies
▶ no data transfer

-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code (numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

Fitting a random forest
I want to fit many small decision trees independently, on the same data.

thread-based parallelism:

+: threads share memory
▶ no data copies
▶ no data transfer

-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code (numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

Fitting a random forest
I want to fit many small decision trees independently, on the same data.

thread-based parallelism:

+: threads share memory
▶ no data copies
▶ no data transfer

-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code (numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

Fitting a random forest
I want to fit many small decision trees independently, on the same data.

thread-based parallelism:

+: threads share memory
▶ no data copies
▶ no data transfer

-: By default, Python forces threads to
run sequentially
The GIL can be released when calling
native code (numpy , scipy ...)

main thread
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Thread-3Thread-2Thread-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

Fitting a random forest

I want to fit many small decision trees independently, on the same data.

process-based parallelism:

+: processes are assured to run in
parallel

-: need to pass and copy data around
▶ larger memory footprint
▶ data transfer overhead

main process
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Process-3Process-2Process-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

Fitting a random forest

I want to fit many small decision trees independently, on the same data.

process-based parallelism:

+: processes are assured to run in
parallel

-: need to pass and copy data around
▶ larger memory footprint
▶ data transfer overhead

main process
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Process-3Process-2Process-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

Fitting a random forest

I want to fit many small decision trees independently, on the same data.

process-based parallelism:

+: processes are assured to run in
parallel

-: need to pass and copy data around
▶ larger memory footprint
▶ data transfer overhead

main process
a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

a b
1 2
3 4
5 6
7 8

Process-3Process-2Process-1

memmaped data
a b
1 2
3 4
5 6
7 8

: single python interpreter

9 / 28

In practice

Figure: Model fitting time - parallel vs. sequential
10 / 28

In practice

Figure: Model fitting time - parallel vs. sequential
10 / 28

In practice

Figure: Model fitting time - parallel vs. sequential
10 / 28

Built-in and Third Party multiprocessing ressources

11 / 28

multiprocessing

provides all necessary constructs for creating and handling
proccesses in Python programs

▶ creation
▶ communication
▶ synchronization

main process

mp.Lock

mp.Processmp.Process

mp.Queue

It’s a very rich library!

12 / 28

multiprocessing

provides all necessary constructs for creating and handling
proccesses in Python programs

▶ creation

▶ communication
▶ synchronization

main process

mp.Lock

mp.Processmp.Process

mp.Queue

It’s a very rich library!

12 / 28

multiprocessing

provides all necessary constructs for creating and handling
proccesses in Python programs

▶ creation
▶ communication

▶ synchronization

main process

mp.Lock

mp.Processmp.Process

mp.Queue

It’s a very rich library!

12 / 28

multiprocessing

provides all necessary constructs for creating and handling
proccesses in Python programs

▶ creation
▶ communication
▶ synchronization

main process

mp.Lock

mp.Processmp.Process

mp.Queue

It’s a very rich library!

12 / 28

multiprocessing
Programs executing embarassingly parallel tasks share a common
multiprocessing strucure:

import multiprocessing as mp

Q: how can i parallelize this effortlessly?
results = map(greet, ["alice", "bob"])

A: worker pools
pool = mp.Pool(2)
results = pool.map(greet, ["Alice", "Bob"])

main process

worker-1

worker-2

greet("Alice")
greet("Bob")

result_1
result_2

mp.Pool

This structure is abstracted away in the mp.Pool class

13 / 28

multiprocessing
Programs executing embarassingly parallel tasks share a common
multiprocessing strucure:

import multiprocessing as mp

Q: how can i parallelize this effortlessly?
results = map(greet, ["alice", "bob"])

A: worker pools
pool = mp.Pool(2)
results = pool.map(greet, ["Alice", "Bob"])

main process

worker-1

worker-2

greet("Alice")
greet("Bob")

result_1
result_2

mp.Pool

This structure is abstracted away in the mp.Pool class

13 / 28

multiprocessing
Programs executing embarassingly parallel tasks share a common
multiprocessing strucure:

import multiprocessing as mp

Q: how can i parallelize this effortlessly?
results = map(greet, ["alice", "bob"])

A: worker pools
pool = mp.Pool(2)
results = pool.map(greet, ["Alice", "Bob"])

main process

worker-1

worker-2

greet("Alice")
greet("Bob")

result_1
result_2

mp.Pool

This structure is abstracted away in the mp.Pool class

13 / 28

multiprocessing portability

Windows (start method; spawn) causes issues with interactive ses-
sions (IPython, Jupyter)

import multiprocessing as mp
mp.set_start_method("spawn")
p = mp.Pool(2)
def greet_friend(name):

... print("hello {}!".format(name))
...
p.map(greet_friend, ("Alice", "Bob"))

AttributeError: Cant get attribute 'greet_friend' on <module ' __main __'>

posix (start method; fork) causes crash with external libraries (GNU
openmp)

recovering from child processes crashes

14 / 28

multiprocessing portability

Windows (start method; spawn) causes issues with interactive ses-
sions (IPython, Jupyter)

import multiprocessing as mp
mp.set_start_method("spawn")
p = mp.Pool(2)
def greet_friend(name):

... print("hello {}!".format(name))
...
p.map(greet_friend, ("Alice", "Bob"))

AttributeError: Cant get attribute 'greet_friend' on <module ' __main __'>

posix (start method; fork) causes crash with external libraries (GNU
openmp)

recovering from child processes crashes

14 / 28

multiprocessing portability

Windows (start method; spawn) causes issues with interactive ses-
sions (IPython, Jupyter)

import multiprocessing as mp
mp.set_start_method("spawn")
p = mp.Pool(2)
def greet_friend(name):

... print("hello {}!".format(name))
...
p.map(greet_friend, ("Alice", "Bob"))

AttributeError: Cant get attribute 'greet_friend' on <module ' __main __'>

posix (start method; fork) causes crash with external libraries (GNU
openmp)

recovering from child processes crashes

14 / 28

multiprocessing portability

Windows (start method; spawn) causes issues with interactive ses-
sions (IPython, Jupyter)

import multiprocessing as mp
mp.set_start_method("spawn")
p = mp.Pool(2)
def greet_friend(name):

... print("hello {}!".format(name))
...
p.map(greet_friend, ("Alice", "Bob"))

AttributeError: Cant get attribute 'greet_friend' on <module ' __main __'>

posix (start method; fork) causes crash with external libraries (GNU
openmp)

recovering from child processes crashes

14 / 28

loky

loky is a third party package, that provides a more robust
process pool implementation.

Support for Python3.4 + (And 2.7... until next year)
Consistent behavior on all , and

Works in interactive shells

It is also the default backend of scikit-learn

15 / 28

loky - API

concurrent futures and loky only expose (the same) worker pool objects

using concurent.futures

from concurrent.futures import ProcessPoolExecutor
executor = ProcessPoolExecutor(max_workers=2)
def greet_friend(name):

... return "hello {}!".format(name)
...
results = executor.map(greet_friend, ("Alice", "Bob")) # non-blocking
for r in results: # blocking until the next task completes.

... print(r)

16 / 28

loky - API

concurrent futures and loky only expose (the same) worker pool objects

using concurent.futures

from concurrent.futures import ProcessPoolExecutor
executor = ProcessPoolExecutor(max_workers=2)
def greet_friend(name):

... return "hello {}!".format(name)
...
results = executor.map(greet_friend, ("Alice", "Bob")) # non-blocking
for r in results: # blocking until the next task completes.

... print(r)

16 / 28

loky - API

concurrent futures and loky only expose (the same) worker pool objects

using loky

from loky import ProcessPoolExecutor
executor = ProcessPoolExecutor(max_workers=2)
def greet_friend(name):

... return "hello {}!".format(name)
...
results = executor.map(greet_friend, ("Alice", "Bob")) # non-blocking
for r in results: # blocking until the next task completes.

... print(r)

16 / 28

joblib

joblib is a parallel computing library built on top of of loky . It provides
many useful features and optimizations for data scientists, including:

disk-based memoization of expensive computations

a backend-agnostic user API

with parallel_backend("loky", n_jobs=2):
do_stuff_in_parallel()

17 / 28

joblib
joblib is a parallel computing library built on top of of loky . It provides

many useful features and optimizations for data scientists, including:

disk-based memoization of expensive computations

@memory.cache
... def f(x):
... print('Running f(%s)' % x)
... return x
print(f(1)) # computes f(1), dumps the result to disk

Running f(1)
1

print(f(1)) # does not re-run f, simply grabs the result from the disk
1

a backend-agnostic user API

with parallel_backend("loky", n_jobs=2):
do_stuff_in_parallel()

17 / 28

joblib

joblib is a parallel computing library built on top of of loky . It provides
many useful features and optimizations for data scientists, including:

disk-based memoization of expensive computations

optimized transfer of numpy arrays

a backend-agnostic user API

with parallel_backend("loky", n_jobs=2):
do_stuff_in_parallel()

17 / 28

joblib

joblib is a parallel computing library built on top of of loky . It provides
many useful features and optimizations for data scientists, including:

disk-based memoization of expensive computations

optimized transfer of numpy arrays

a backend-agnostic user API

with parallel_backend("loky", n_jobs=2):
do_stuff_in_parallel()

17 / 28

joblib

joblib is a parallel computing library built on top of of loky . It provides
many useful features and optimizations for data scientists, including:

disk-based memoization of expensive computations

optimized transfer of numpy arrays

a backend-agnostic user API

with parallel_backend("threading", n_jobs=2):
do_stuff_in_parallel()

17 / 28

The challenges of multiprocessing (and beyond)

Improvements in python multiprocessing mostly concern:

speed (of data communication)
memory footprint (of duplicated data)
ease of use, robustnews(deadlocks)

18 / 28

Optimizing data transfer

19 / 28

disclaimer

The optimizations mentionned now are CPython specific.

20 / 28

Serialization
Serialization defines the process of transforming an in-memory object into a
sequence of bytes.

estimator

estimator

0111101. ..01

process-1 process-2

deserializationserialization

The bytes string contains the instructions sequence that has to be executed to
reconstruct the graph of objects in a fresh python environment

21 / 28

Serialization
Serialization defines the process of transforming an in-memory object into a
sequence of bytes.

estimator

estimator

0111101. ..01

process-1 process-2

deserializationserialization

The bytes string contains the instructions sequence that has to be executed to
reconstruct the graph of objects in a fresh python environment

21 / 28

Serialization
Serialization defines the process of transforming an in-memory object into a
sequence of bytes.

estimator

estimator

0111101. ..01

process-1 process-2

deserializationserialization

The bytes string contains the instructions sequence that has to be executed to
reconstruct the graph of objects in a fresh python environment

21 / 28

Serialization
Serialization defines the process of transforming an in-memory object into a
sequence of bytes.

estimator estimator

0111101. ..01

process-1 process-2

deserializationserialization

The bytes string contains the instructions sequence that has to be executed to
reconstruct the graph of objects in a fresh python environment

21 / 28

the pickle protocol

Python defines a serialization protocol called pickle , and provides an
implementation of it in the standard library.

import pickle
s = pickle.dumps([1, 2, 3]) # serialization (pickling) step
s

b'\x80\x03]q\x00(K\x01K\x02K\x03e.'

depickled_list = pickle.loads(b'\x80\x03]q\x00(K\x01K\x02K\x03e.')
depickled_list

[1, 2, 3]

22 / 28

pickle extensions
by design, the pickle implementation blocks the serialization of some
Python constructs

import pickle
import cloudpickle
pickle.dumps(lambda x: x + 1) # would cause arbitrary code execution

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

_pickle.PicklingError: Can't pickle <function <lambda> at 0x7fd0b36631e0
attribute lookup <lambda> on __main __ failed

In practice, data scientists need remote code execution of interactively
defined functions (jupyter + dask , Zeppelin + (py)spark ...)
Such frameworks require pickle extensions such as cloudpickle

cloudpickle.dumps(lambda x: x + 1)
b'\x80\x04\x958\x01\x00\x00\x00\x00\x00\x00\x8c\x17cloudpickle.cloudpickle ...'

23 / 28

pickle extensions
by design, the pickle implementation blocks the serialization of some
Python constructs

import pickle
import cloudpickle
pickle.dumps(lambda x: x + 1) # would cause arbitrary code execution

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

_pickle.PicklingError: Can't pickle <function <lambda> at 0x7fd0b36631e0
attribute lookup <lambda> on __main __ failed

In practice, data scientists need remote code execution of interactively
defined functions (jupyter + dask , Zeppelin + (py)spark ...)
Such frameworks require pickle extensions such as cloudpickle

cloudpickle.dumps(lambda x: x + 1)
b'\x80\x04\x958\x01\x00\x00\x00\x00\x00\x00\x8c\x17cloudpickle.cloudpickle ...'

23 / 28

pickle extensions
by design, the pickle implementation blocks the serialization of some
Python constructs

import pickle
import cloudpickle
pickle.dumps(lambda x: x + 1) # would cause arbitrary code execution

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

_pickle.PicklingError: Can't pickle <function <lambda> at 0x7fd0b36631e0
attribute lookup <lambda> on __main __ failed

In practice, data scientists need remote code execution of interactively
defined functions (jupyter + dask , Zeppelin + (py)spark ...)
Such frameworks require pickle extensions such as cloudpickle

cloudpickle.dumps(lambda x: x + 1)
b'\x80\x04\x958\x01\x00\x00\x00\x00\x00\x00\x8c\x17cloudpickle.cloudpickle ...'

23 / 28

pickle extensions
by design, the pickle implementation blocks the serialization of some
Python constructs

import pickle
import cloudpickle
pickle.dumps(lambda x: x + 1) # would cause arbitrary code execution

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

_pickle.PicklingError: Can't pickle <function <lambda> at 0x7fd0b36631e0
attribute lookup <lambda> on __main __ failed

In practice, data scientists need remote code execution of interactively
defined functions (jupyter + dask , Zeppelin + (py)spark ...)
Such frameworks require pickle extensions such as cloudpickle

cloudpickle.dumps(lambda x: x + 1)
b'\x80\x04\x958\x01\x00\x00\x00\x00\x00\x00\x8c\x17cloudpickle.cloudpickle ...'

23 / 28

pickle extensions (2)

The pickle module is implemented both as a pure Python module, and
as a C -optimized module.

pickle extensions however could only extend the slow pythonic pickle

$python3.7 -m timeit 'import pickle; pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.39 msec per loop
$python3.7 -m timeit 'import cloudpickle; cloudpickle.dumps(list(range(100000)))'
2 loops, best of 5: 119 msec per loop

24 / 28

pickle extensions (2)

The pickle module is implemented both as a pure Python module, and
as a C -optimized module.

pickle extensions however could only extend the slow pythonic pickle

$python3.7 -m timeit 'import pickle; pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.39 msec per loop
$python3.7 -m timeit 'import cloudpickle; cloudpickle.dumps(list(range(100000)))'
2 loops, best of 5: 119 msec per loop

24 / 28

pickle extensions (2)

The pickle module is implemented both as a pure Python module, and
as a C -optimized module.

pickle extensions however could only extend the slow pythonic pickle

$python3.7 -m timeit 'import pickle; pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.39 msec per loop
$python3.7 -m timeit 'import cloudpickle; cloudpickle.dumps(list(range(100000)))'
2 loops, best of 5: 119 msec per loop

24 / 28

extending the C-optimized pickle

in Python 3.8 , pickle extensions can now extend the C-optimized
pickle module 2

$python3.8 -m timeit 'import pickle;pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.69 msec per loop
$python3.8 -m timeit 'import cloudpickle;cloudpickle.dumps(list(range(100000)))'
100 loops, best of 5: 3.73 msec per loop

30x faster than on python3.7!

2joint work with ogrisel and Antoine Pitrou
25 / 28

extending the C-optimized pickle

in Python 3.8 , pickle extensions can now extend the C-optimized
pickle module 2

$python3.8 -m timeit 'import pickle;pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.69 msec per loop
$python3.8 -m timeit 'import cloudpickle;cloudpickle.dumps(list(range(100000)))'
100 loops, best of 5: 3.73 msec per loop

30x faster than on python3.7!

2joint work with ogrisel and Antoine Pitrou
25 / 28

extending the C-optimized pickle

in Python 3.8 , pickle extensions can now extend the C-optimized
pickle module 2

$python3.8 -m timeit 'import pickle;pickle.dumps(list(range(100000)))'
50 loops, best of 5: 4.69 msec per loop
$python3.8 -m timeit 'import cloudpickle;cloudpickle.dumps(list(range(100000)))'
100 loops, best of 5: 3.73 msec per loop

30x faster than on python3.7!

2joint work with ogrisel and Antoine Pitrou
25 / 28

pickle protocol 5

 pickle was originally designed for on-disk persistency of Python
objects.

 Now, it is used wildely to communicate objects between workers,
which is done in-memory. RAM usage becomes a critical concern.

pickle protocol 5 a addition: PickleBuffer
ensures no copy operations when dumping or loading objects with large numpy
arrays and Arrow tables. (pandas DataFrame , scikit-learn estima-
tors...)

awork by Antoine Pitrou

26 / 28

pickle protocol 5

 pickle was originally designed for on-disk persistency of Python
objects.

 Now, it is used wildely to communicate objects between workers,
which is done in-memory. RAM usage becomes a critical concern.

pickle protocol 5 a addition: PickleBuffer
ensures no copy operations when dumping or loading objects with large numpy
arrays and Arrow tables. (pandas DataFrame , scikit-learn estima-
tors...)

awork by Antoine Pitrou

26 / 28

pickle protocol 5

 pickle was originally designed for on-disk persistency of Python
objects.

 Now, it is used wildely to communicate objects between workers,
which is done in-memory. RAM usage becomes a critical concern.

pickle protocol 5 a addition: PickleBuffer
ensures no copy operations when dumping or loading objects with large numpy
arrays and Arrow tables. (pandas DataFrame , scikit-learn estima-
tors...)

awork by Antoine Pitrou

26 / 28

out-of-band serialization
pickle protocol 5 goes even one step further: It allows delegation
of PEP 3118 -compatible objects serialization to third-party code.

shape

strides

flags big data buffer numpy array

pickle stream
(in band)

third-party stream
(out-of-band)

27 / 28

out-of-band serialization
pickle protocol 5 goes even one step further: It allows delegation
of PEP 3118 -compatible objects serialization to third-party code.

shape

strides

flags big data buffer numpy array

pickle stream
(in band)

third-party stream
(out-of-band)

27 / 28

out-of-band serialization
pickle protocol 5 goes even one step further: It allows delegation
of PEP 3118 -compatible objects serialization to third-party code.

shape

strides

flags big data buffer numpy array

pickle stream
(in band)

third-party stream
(out-of-band)

27 / 28

Conclusion

parallel computing often generates significant speedups when
executing machine learning code

which backend (processes vs. threads) to use can be a problem-
specific question: what’s the size of your data, does your
compute-hungry code releases the GIL...

working with upstream is worth the hassle

Questions?

28 / 28

Conclusion

parallel computing often generates significant speedups when
executing machine learning code

which backend (processes vs. threads) to use can be a problem-
specific question: what’s the size of your data, does your
compute-hungry code releases the GIL...

working with upstream is worth the hassle

Questions?

28 / 28

Conclusion

parallel computing often generates significant speedups when
executing machine learning code

which backend (processes vs. threads) to use can be a problem-
specific question: what’s the size of your data, does your
compute-hungry code releases the GIL...

working with upstream is worth the hassle

Questions?

28 / 28

	Parallel computing in machine learning - an overview
	Python?

	Built-in and Third Party multiprocessing ressources
	In the Standard Library
	Third-party extensions

	Optimizing data communication
	Serialization in python
	Better support for pickle extensions
	PEP 574: pickle protocol 5

